Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.17.473180

ABSTRACT

Rationale: In face of the ongoing SARS-CoV-2 pandemic, effective and well-understood treatment options are still scarce. While vaccines have proven instrumental in fighting SARS-CoV-2, their efficacy is challenged by vaccine hesitancy, novel variants and short-lasting immunity. Therefore, understanding and optimization of therapeutic options remains essential. Objectives: We aimed at generating a deeper understanding on how currently used drugs, specifically dexamethasone and anti-SARS-CoV-2 antibodies, affect SARS-CoV-2 infection and host responses. Possible synergistic effects of both substances are investigated to evaluate combinatorial treatments. Methods: By using two COVID-19 hamster models, pulmonary immune responses were analyzed to characterize effects of treatment with either dexamethasone, anti-SARS-CoV-2 spike monoclonal antibody or a combination of both. scRNA sequencing was employed to reveal transcriptional response to treatment on a single cell level. Measurements and main results: Dexamethasone treatment resulted in similar or increased viral loads compared to controls. Anti-SARS-CoV-2 antibody treatment alone or combined with dexamethasone successfully reduced pulmonary viral burden. Dexamethasone exhibited strong anti-inflammatory effects and prevented fulminant disease in a severe COVID-19-like disease model. Combination therapy showed additive benefits with both anti-viral and anti-inflammatory potency. Bulk and single-cell transcriptomic analyses confirmed dampened inflammatory cell recruitment into lungs upon dexamethasone treatment and identified a candidate subpopulation of neutrophils specifically responsive to dexamethasone. Conclusions: Our analyses i) confirm the anti-inflammatory properties and indicate possible modes of action for dexamethasone, ii) validate anti-viral effects of anti-SARS-CoV-2 antibody treatment, and iii) reveal synergistic effects of a combination therapy and can thus inform more effective COVID-19 therapies.


Subject(s)
COVID-19 , Acute Disease
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.17.460777

ABSTRACT

The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. Here, we demonstrate altered levels of factor XII (FXII) and its activation products in two independent cohorts of critically ill COVID-19 patients in comparison to patients suffering from severe acute respiratory distress syndrome due to influenza virus (ARDS-influenza). Compatible with this data, we report rapid consumption of FXII in COVID-19, but not in ARDS-influenza, plasma. Interestingly, the kaolin clotting time was not prolonged in COVID-19 as compared to ARDS-influenza. Using confocal and electron microscopy, we show that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggers formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, we observed clot lysis in 30% of COVID-19 patients and 84% of ARDS-influenza subjects. Analysis of lung tissue sections revealed wide-spread extra- and intra-vascular compact fibrin deposits in COVID-19. Together, our results indicate that elevated fibrinogen levels and increased FXII activation rate promote thrombosis and thrombolysis resistance via enhanced thrombus formation and stability in COVID-19.


Subject(s)
Thrombosis , COVID-19 , Respiratory Distress Syndrome
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.08.21258481

ABSTRACT

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathogenesis, and it remains unclear if T cells also contribute to disease pathology. Here, we combined single-cell transcriptomics and proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated, CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Age-dependent generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. The proportion of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a correlated with clinical outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Subject(s)
Acute Disease , Sexual Dysfunction, Physiological , Drug-Related Side Effects and Adverse Reactions , COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.27.20081810

ABSTRACT

The COVID-19 pandemic is an unprecedented global challenge. Highly variable in its presentation, spread and clinical outcome, novel point-of-care diagnostic classifiers are urgently required. Here, we describe a set of COVID-19 clinical classifiers discovered using a newly designed low-cost high-throughput mass spectrometry-based platform. Introducing a new sample preparation pipeline coupled with short-gradient high-flow liquid chromatography and mass spectrometry, our methodology facilitates clinical implementation and increases sample throughput and quantification precision. Providing a rapid assessment of serum or plasma samples at scale, we report 27 biomarkers that distinguish mild and severe forms of COVID-19, of which some may have potential as therapeutic targets. These proteins highlight the role of complement factors, the coagulation system, inflammation modulators as well as pro-inflammatory signalling upstream and downstream of Interleukin 6. Application of novel methodologies hence transforms proteomics from a research tool into a rapid-response, clinically actionable technology adaptable to infectious outbreaks. Highlights- A completely redesigned clinical proteomics platform increases throughput and precision while reducing costs. - 27 biomarkers are differentially expressed between WHO severity grades for COVID-19. - The study highlights potential therapeutic targets that include complement factors, the coagulation system, inflammation modulators as well as pro-inflammatory signalling both upstream and downstream of interleukin 6.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL